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A Note on Solid Partitions 

By Donald E. Knuth 

Abstract. The problem of enumerating partitions which satisfy a given partial order 
relation is reduced to the problem of enumerating permutations satisfying that relation. 
This theorem is applied to the enumeration of solid partitions; existing tables of solid 
partitions are extended. 

A plane partition of n is an arrangement of nonnegative integers 

noo no, no2 .. 

n10 fll fl12 *n*o ni n1 . . . nnn 

which sum to n, and which are nonincreasing in both rows and columns: 

nii > ni(j+l), nit, > n(i+,)i. 

For example, 
5 4 2 1 1 

(1) 3 2 

2 2 

is a plane partition of 22. (Blank entries are zero.) 
Let b(n) denote the total number of plane partitions of n. In 1912, Major Percy A. 

MacMahon triumphantly announced [5] a proof of the remarkable formula 

1 + b(1)z + b(2)z2 + b(3)z3 + * = 1/(1 -_z)(1 - Z2)2(1 - ... 

which he had previously verified by numerous empirical calculations, but which 
he had been unable to prove six months earlier [4]. In his enthusiasm he concluded 
his paper by saying, "We have evidently, potentially, the complete solution of the 
problem of three-dimensional partition, and it remains to work it out and bring 
it to the same completeness as has been secured in this Part for the problem in two 
dimensions. This will form the subject of Part VII of this Memoir." The problem 
of enumerating three-dimensional ("solid") partitions has never been resolved, 
however, and Part VII of MacMahon's classic Memoir never appeared. No con- 
structive proof of MacMahon's formula for the two-dimensional case was known 
until 1969 [2]. 

MacMahon at one time conjectured that, if c(n) is the number of solid partitions 
of n, the formula 

1 + c(l)z + c(2)z2 + c(3)z ? * = 1/(I -_z)(1 _ Z2)3(1 _ Z3)6(1 _ Z10 
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TABLE 1 

n c(n) c'(n) d(n) d'(n) e(n) e'(n) 

0 1 1 1 1 0 0 
1 1 1 0 0 1 1 
2 4 4 2 2 3 3 
3 10 9 5 4 6 5 
4 26 22 12 9 10 7 
5 59 46 24 16 15 9 
6 140 102 56 35 20 10 
7 307 206 113 63 26 12 
8 684 427 248 129 34 16 
9 1464 841 503 234 46 21 

10 3122 1658 1043 445 68 29 
11 6500 3173 2080 798 97 32 
12 13426 6038 4169 1458 120 22 
13 27248 11251 8145 2568 112 -2 
14 54804 20807 15897 4561 23 -39 
15 108802 37907 30545 7924 - 186 -67 
16 214071 68493 58402 13770 -496 -48 
17 416849 122338 110461 23584 -735 64 
18 805124 216819 207802 40301 -531 277 
19 1541637 380637 387561 68097 779 576 
20 2930329 663417 718875 114646 3894 848 
21 5528733 1147033 1324038 191336 9323 981 
22 10362312 1969961 2425473 317893 16472 771 
23 19295226 3359677 4416193 524396 23056 40 
24 35713454 5694592 7999516 861054 23850 -1498 
25 65715094 9592063 14411507 1405130 10116 -4276 
26 120256653 16065593 25837198 2282651 -31613 -8745 
27 218893580 26756430 46092306 3688254 - 120720 -15062 
28 396418699 44328414 81851250 5933463 -283202 -21702 

might be valid. (See [6, pp. 175-176].) But recently-computed tables [1] show that 
this formula gives the wrong answer for n = 6. In order to find out the true nature 
of c(n), the only known approach is to prepare tables, by brute force, and to examine 
these tables with the hope of finding some pattern. 

The purpose of this note is to describe a slightly sophisticated computational 
method for extending the existing tables of c(n), by showing how the coefficients 
d(n) in the formula 

1 +c(l)x +c(2)x2 + 

= (1 + d(1)x + d(2)X2 + X)/(1 -X)(1 - X2)(1 - X3) ... 

can be computed for small n. The computational technique we will discuss was 
essentially used by MacMahon [4] in his examination of the two-dimensional case, 
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and later also in his preliminary study of solid partitions [5, pp. 360-373]. Since 
the ideas apply under fairly general circumstances, we will reformulate MacMahon's 
method for the case of arbitrary partially-ordered sets. 

Theory. Let P be a set of elements that are partially-ordered by the relation < 

and well-ordered by the total order relation <. We will assume that the partial order 
is embedded in the total order, in the sense that 

(2) x -< y implies x < y. 

By a labelling of P we mean a function n(x) taking the elements of P into the set N 
of nonnegative integers, satisfying the two conditions 

(Li) x -< y implies n(x) ? n(y). 
(L2) Only finitely many x have n(x) > 0. 

We wish to count the number of labellings of P satisfying certain restrictions. 
It is not difficult to show that there is a one-to-one correspondence between 

labellings of P and pairs of sequences 

ni >_ n2_ >s n.s 
(3) 

Xl 1 X2, 
... 

Xm, 

where m 2 0, the ni are positive integers, and the xi are distinct elements of P, subject 
to the following two conditions: 

(SI) For 1 ? j < m and x E P, x -< xi implies x = xi for some i < j. 
(S2) xi > xi,, implies ni > ni+1, for 1 < i < m. 

To construct such a correspondence, we may proceed as follows. Given a labelling, 
let nf, n2, , no be the nonzero labels in nonincreasing order, and let xi be such 
that n(xi) = n1; the x's are arranged so that we put x before y when n(x) = n(y) 
and x < y. Then (SI) is satisfied, since x -< xi implies that n(x) ? n(xi) and x < xi; 
and (S2) is satisfied, since ni = ni+1 implies that xi < xi,. Conversely, given sequences 
(3) satisfying (SI) and (S2) we define a labelling by setting n(x1) = ni for 1 < i ? m 
and n(x) = 0 for all other x. Clearly (L2) is satisfied, and so is (LI), for if x < y 
we have either n(x) > 0 = n(y) or y = xi, x = xi, i < j, n(x) = n ? nri = n(y). 
It is easy to verify that these two constructions are inverses of each other, since 
(S2) and the relation n(xi) = n, uniquely defines the sequence of x's. 

For example, let P be the set of points { (i, j) i, j 1E N} of the plane, subject 
to the partial order 

(i, D) < (i', f'), if and only if i ? i' and j ? j', 
and the well-order 

(i, j) < (i', j')' if and only if i < i' or (i = i' and j < j'). 

A labelling of this set P is essentially a plane partition; for example, (1) has n((O, 0)) 
5, n((O, 1)) 4, ... , n((0, 5)) = 0, etc. The sequences (3) corresponding to (1) are 

f4 
l ni, , n = 5 , 4 , 3 , 2 , 2 , 2 , 2 , 1 , 1 

xi,, , Xm (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (2, 1), (0, 3), (0, 4) 

We are interested primarily in cases where P is countably infinite, and when 
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the labels sum to a given number n: 

(5) i n(x) = n. 
zEP 

Let us say that such a labelling is a P-partition of n. For this case we can refine the 
above correspondence in order to minimize the dependence of the n's on the x's. 
Every P-partition of n corresponds uniquely to a pair of sequences 

n( _6 n2 _ n3 0, n, = n; (6) 
XI, X2, * Xn; 

where m > 0. the n. form an infinite sequence of nonnegative integers, the x, are 
distinct elements of P, and conditions (SI), (S2), (S3), and (S4) hold, where 

(S3) Either m = 0 or n, > nm+i; 
(S4) If m > 0, there exists x E P such that X < Xm and x a= x, for 1 < i ? m. 
Such pairs of sequences correspond uniquely to pairs of sequences (3) of the 

former type, when P is infinite, if we extend the n's by adding infinitely many zeroes, 
and if we contract the x's, if necessary, by removing Xm if it is the least element of 
P - {xi, ... , X. 1). For example, (4) corresponds to 

(7) 5 , 4 , 3 , 2 , 2 , 2 , 2 , 1, 1, O O, 0, 

(O. 0), (O. 1), (1, 0), (O. 2), (1, 1), (2, 0), (2, 1). 

It is not difficult to verify that this process defines a one-to-one correspondence. 
Let us say that a sequence of x's satisfying conditions (SI) and (S4) is a topological 

sequence, since such sequences arise in connection with "topological sorting" (see 
[3, pp. 258-268]). The index of a topological sequence is defined to be 

(8) E I{j j I < j< m and xi >x,+11 + m. 

Given a topological sequence, every sequence ni _ n2 ? ... of nonnegative 
integers satisfying (S2) and (S3) corresponds uniquely to a sequence pi _ p2 L * * - 

obtained by subtracting unity from n,, - * *, ni, in turn, for each j such that xi > xi., 
or j = m. 

For example, the topological sequence 

(9) X1, * *, X7 = (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (2, 1) 

has index 3 + 7; and the sequence pi, p2, p3; corresponding to (7) is obtained by 
subtracting 1 from n,, n2, n3, then subtracting 1 from each of n,, n2, * *,: 

(10) PI, P2, P3 3, 2, 1, 1, 1, 1, 1, 1, 1, 0,0, 0, . 

Note that the sum of the pi is the sum of the ni diminished by the index; this is the- 
only interdependence between the x's, the p's, and n. 

In summary, our observations have the following consequence: 
THEOREM. Let P be an infinite partially-ordered set. There is a one-to-one cor- 

respondence between P-partitions of n, and ordered pairs (x, p) where x = xi, . . , x,,, 
is a topological sequence and p = Pi, p2, *** is a partition (in the ordinary sense) of 
n - k, k the index of x. 

Since the generating function for ordinary partitions is l/(l -_z)(l _ z2) .l. 

we have 
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COROLLARY. Let P be an infinite partially-ordered set; let s(n) be the number of 
P-partitions of n, and let t(k) be the number of topological sequences of P having index k. 
Then, 

I + s(1)z + s(2)z2 + *. 

= (1 + t(1)z + t(2)z2 + .)/(I -_z)(1 _ Z2)(1 - z 3) 

Consequently, we can enumerate P-partitions by enumerating only the topological 
sequences, and the latter are easier to enumerate. Note that the definition of topo- 
logical sequence involves an assumed well ordering <; but the corollary shows 
that the number of topological sequences of given index is independent of the well 
ordering. Therefore we can choose any convenient well-ordering relation (e.g., the 
lexicographic order in our examples) when doing the enumeration. 

An Application. To find the number c(n) of solid partitions of n, let P be the 
set of three-dimensional lattice points 

{(i,j,k) I i,j,k G N), 

with the partial ordering 

(i, j, k) (i', j', k'), 

if and only if 

i :5 ill jS ' k :! k'k 

and with the lexicographic well-ordering 

(i, j, k) < (i', j', k%) 

if and only if 

i < i' or (i = i' and j < j') or (i= i', j = j', and k < k'). 

If d(n) is the corresponding number of topological sequences having index n, we 
have the formula 

I + c(l)z + c(2)z2 + 

= (1 + d(l)z + d(2)z2 + )/(1 - z)(1 - Z2)(1 - Z) 

The following ALGOL program enumerates d(O), d(l), *., d(n), using a fairly 
standard backtracking method: 

procedure count (n, d); integer n; integer array d; 
begin comment d[i] is set to the number of topological sequences of index i, for 
0 ? i ? n; 

integer array cc[O n, 0: n]; comment number of columns in given plane, row; 
integer array rr[O n]; comment number of rows in given plane; 
integer pp; comment number of planes; 
integer k; comment recursion depth; 
integer array row[O: n]; comment row of given move; 
integer array plane[O: n]; comment plane of given move; 



960 DONALD E. KNUTH 

integer array index[O: n]; comment partial sum for index; 
integer p, r, c; comment current plane, row, column; 
integer t; comment temporary storage; 
for p := 0 step 1 until n do 
begin rr[p] 0; for r := 0 step i until n do cc[p, r] 0 end; 

for k 1= step 1 until n do d[k] 0; 
pp := k : index[O] plane[O] := row[O]: 0; d[O] 1; 
up k k + 1; p pp; r 0; 
try c :- cc[p, r]; 
if p > 0 then if cc[p- 1, r] < c then go to again; 
if r > 0 then if cc[p, r - 1] < c then go to again; 
if p < plane[k - 1] then go to less; 
if p = plane[k - 1] then if r < row[k - 1] then go to less; 
t := index[k - 1]; go to move; 
less: t := index[k - 1] + k - 1; 
if k + t > n then go to nope; 
move: begin comment We have now decided to choose the point (p, r, c) as 

the kth element of the topological sequence; end; 
index[k] := t; 
ifp + r> 0 then d[k + t] := d[k + t] + 1; 
if t + k _ n then go to again; 
if r + c 0 then pp := pp + 1; 
if c = 0 then rr[p]:= rr[p] + 1; 
cc[p, r]:= c + 1; 
plane[k] := p; row[k] := r; go to up; 
again: if r > 0 then begin r := r - 1; go to try end; 
if p > 0 then begin p - 1; r := rr[p]; go to try end; 
nope: k := k - 1; 
if k > 0 then begin p := planejk]; r :row[k]; 

c := cc[p, r] - 1; cc[p, r] := c; 
if c = 0 then rr[p] := rr[p]- 1; 
if r+ c =Othenpp :=pp- 1; 
go to again end; 

end count. 
Simple modifications to this program make it possible to count c'(n), the number 

of solid partitions restricted to at most two planes. Table 1 shows the values of c(n), 
c'(n), d(n), d'(n), e(n) and e'(n), for n ? 28, where the exponents e(n) are defined 
by the relation 

1 + c(l)z + c(2)z2 + * 1/(1 - z)6(1)(1 - z2)e(2)(1 - Z3)6(3) 

The numbers d'(n), e'(n) are defined similarly. Unfortunately no pattern is evident 
in these numbers, so this table should suffice to disprove most simple conjectures 
about solid partitions. 
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